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What is it that makes a mathematical form a good grounding for a mathematical discipline? 
This is a question that has been extensively discussed in cognitive science over the last decade 
(Barsalou, 1999, 2008; Lakoff & Nuñez, 2000). Intuitively, some mathematical forms seem to 
serve as very good ‘groundings’ of a mathematical domain. For instance, the number line has 
been shown to be useful for students attempting to understand numerical magnitude (Siegler, 
Thompson & Schneider, 2011; Thompson & Schneider, 2010); negatives as reflections 
(Tsang et al., in press), basic arithmetic operations (e.g., addition and subtraction as rightward 
and leftward motion; multiplication and division as scaling). The unit circle has been seen to 
be useful for grounding trigonometric identities (Mickey & McClelland, 2013). Multiplication 
has many intuitively ‘good’ grounds, including repeated addition, area, and scaling.  

It has been argued that good groundings occur when the abstractions of mathematics are made 
meaningful, and that this happens when abstractions are situated in everyday physical 
activities (Lakoff & Nuñez, 2000; Braithwaite & Goldstone, 2013), and in visuo-spatial—as 
opposed to formal, systems (e.g., Mickey & McClelland, 2013). For instance, the number line 
can be further grounded as beads on a string. Linear functions can be grounded in terms of 
constant motions (Nathan, Kintsch & Young, 1992). Although the trigonometric functions are 
uniquely specified by the definitions 

 
C(x-y)=C(x)C(y)+S(x)S(y) and  
 
S(x-y)=S(x)C(y)-C(x)S(y) 
 

With x ,y in R and C, S not identically zero (Robison, 1968; this characterization due to 
Steven Taschuk), it seems that the sine and cosine functions become meaningful when 
interpreted as the coordinates of points on the unit circle (or even more the signed height and 
width of inscribed triangles). 

Symbol systems, on this account are not good groundings because they are arbitrary (rather 
than meaningful), non-spatial, and unrelated to everyday physical experience. On this 
hypothesis, good groundings are ‘embodied’ or ‘situated’ groundings. 

In my talk, I’ll suggest instead that symbol structures and classical diagrams are the same sort 
of creature, and that ‘embodiment’ is at best correlated with the features that make for good 
groundings. In particular, I’ll argue that most or all mathematical models (like most or all 
mental models) comprise a depicted spatial structure and a deontic structure—a set of 
appropriate and inappropriate behaviors (Wittgenstein, 1978). This level of description unifies 
spatial symbol systems such as the algebra of arithmetic equations and other diagrams such as 
function graphs, networks, or the unit circle. It is worth emphasizing that on this account of 
grounding, the degree of grounding is a function of the state of the reasoner. Symbol systems 
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can be good groundings for those steeped in them; embodiment provides routinely good 
groundings only because physical experiences tend to be widely shared. 

A common proposal for differentiating diagrams from symbol systems is that diagrams may 
be diagrammatically—that they may carry meaning ‘directly’, while symbol systems carry 
meaning only indirectly or through interpretation (Stenning, 2000). This distinction is real, 
but it is continuous, not categorical, across systems of representations. There are, in all 
mathematical models, two sorts of meaning: one sort inheres in the system; this is the sense 
by which symbol systems are deeply meaningful, in that they written inscriptions depict the 
spatial structure of some (imagined) physical situation—a situation made of symbols. This is 
also the sense at work in Cantor’s diagonalization proof, in which numerals are taken 
themselves as objects. Another sense of meaning is referential, in which a mathematical 
model is taken to stand in for another situation, and is aligned with that situation. Both 
traditional diagrams and symbols systems may be used either diagrammatically or 
referentially, and meaning is built out of both through combinations of reasoning about 
surface form and referential meaning (Landy, Allen & Zednik, 2014). 

So then what does make some models so amazingly good at grounding understandings of 
broad domains? I’ll suggest that this comes down not to some categorical or qualitative 
distinction to be drawn on the basis of the semiotic properties of the sign systems, but to good 
old-fashioned cognitive constraints and limitations. A mental model is good when the 
depicted space (mediated by an inscriptive practice) is easy to remember and reconstruct, the 
deontology is simple to remember and easy to physically instantiate, and the collection of 
important inferences are easy to draw within capacity limitations and using available or easily 
adapted perceptual-motor routines. A situation or mathematical model serves as a good 
grounding for another domain when the other domain does not have these features, the 
grounding does, and the mapping between the two is easy to traverse. Symbolic systems are 
poor groundings because of the ways they mismatch the cognitive state of the learner, and 
therefore carry high memory burdens, many opportunities for error, and few opportunities for 
inference. 

That everyday physical experiences are often good groundings can now be seen to be a 
contingent, not a constitutive, characteristic. It is often the case that we have already adapted 
our perceptual-motor processing to the deontic requirements of everyday situations, that we 
are familiar with many inferences about them that can be readily exported, and that we are 
familiar enough to be able to reconstruct them with high regularity. This, and not any deeper 
notion of ‘embodiment’, is what makes everyday experience so often a good conceptual 
grounding for higher mathematics. This perspective unifies the kind of grounding a novice 
gets from understanding ‘more’ as ‘rightward on the line’, or ‘rightward on this string of 
beads’, and the kind of grounding an algebraic topologist gets from identifying deformations 
of topological spaces in high dimensions with abstract algebraic groups. 

Once we have seen good grounding for what it is, a function of cognitive economy and useful 
prior experience, we can then design symbolic systems that are more effective—that have 
lower load, that yield better generative and predictive models for making inferences, that are 
easily exported, and that better align with pre-existing implementation systems in human 
reasoners. I’ll present one such attempt, the ‘Graspable Mathematics’ system, and show how 
this dynamical algebra potentially lowers the burden on the algebraic reasoner, improving the 
intrinsic meaningfulness of the mathematical model and better grounding other mathematical 
models. 

16



 

References 
 
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–624. 

Barsalou, L.W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577-660. 

Braithwaite, D. W., & Goldstone, R. L. (2013). Integrating formal and grounded representations in 
combinatorics learning. Journal of Educational Psychology, 105(3), 666. 

Lakoff, G. & Nuñez, R. E. 2000: Where mathematics come from: How the embodied mind brings 
mathematics into being. New York: Basic Books. 

Landy, D., Allen, C., & Zednik, C. (2014). A perceptual account of symbolic reasoning. Frontiers in 
psychology, 5, 275. 

Mickey, K.W. & McClelland, J.L. (2013). Running circles around symbol manipulation in 
trigonometry. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th 
Annual Conference of the Cognitive Science Society (p. 4048). Austin, TX: Cognitive Science 
Society. 

Nathan, M. J., Kintsch, W., & Young E. (1992). A theory of algebra-word-problem comprehension 
and its implications for the design of learning environments. Cognition & Instruction, 9, 329–389. 

Robison, G. B. (1968). A new approach to circular functions, II and lim (sin x)/x. Mathematics 
Magazine, 66-70. 

Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and 
fractions development. Cognitive Psychology, 62(4), 273-296. 

Stenning, K. (2000). Distinctions with differences: Comparing criteria for distinguishing diagrammatic 
from sentential systems. In Theory and application of diagrams (pp. 132-148). Berlin, Heidelberg: 
Springer. 

Taschuk, S. (2015). Axiomatic definition of sin and cos? Retrieved October 10, 2015, from 
http://math.stackexchange.com/questions/1303044/axiomatic-definition-of-sin-and-
cos/1303259#1303259 

Thompson, C. A., & Siegler, R. S. (2010). Linear numerical-magnitude representations aid children’s 
memory for numbers. Psychological Science, 21(9), 1274-1281. 

Tsang, J. M., Blair, K. P., Bofferding, L., & Schwartz, D. L. (2015). Learning to “see” less than 
nothing: Putting perceptual skills to work for learning numerical structure. Cognition and 
Instruction, 33(2), 154-197. 

Wittgenstein, L. (1978). Remarks on the foundations of mathematics. In G. H. von Wright (Ed.), R. 
Rhees and G. E. M. Anscombe (trans.), revised edition, Blackwell: Oxford. 

 

17


